您好:北京泰茂科技股份有限公司

欢迎来到泰茂医疗器械招标网

当前位置: 行业动态> 行业动态
Acad Emerg Med:大数据模型可改善对住院患者的预后预测
发布时间:2016/02/23 信息来源:查看

Acad Emerg Med:大数据模型可改善对住院患者的预后预测

2016年2月22日 讯 /生物谷BIOON/ --在美国有超过一半的院内死亡都与严重感染或败血症直接相关,近日来自耶鲁大学等机构的研究者开发了一种预测模型,其可以利用当地病人的大数据,并且利用机器学习方法来帮助鉴别那些有疾病风险的患者,这种新型方法比当前的临床实践方法要好,该研究发表在国际杂志Academic Emergency Medicine上。

当前急诊医生可以利用简单的计算器或评分系统来作为临床的决策准则帮助确定哪些患者更易因院内败血症而死亡,然而这些方法常常并不能成功鉴别出高风险的病人,因为这仅仅是基于有限的信息,而这并不能够计算出数据的复杂性,其仅仅是利用不同病人群体而开发出的。

本文中,科学家开发的这种新型模型就利用了来自当地病人的电子健康记录的大量数据,这种名为“随机森林模型”的方法就可以对来自病人的数据进行处理分析并且做出一定的预测;这种新型的大数据分析方法远胜于当前的模型,而且可以潜在地在每5000份严重的败血症患者中进行分类出200-300名患者。

R. Andrew Taylor博士指出,利用机器学习技术并且结合大量的突变(超过500个突变),我们就可以开发出一种新型模型来潜在帮助更好地预测院内患者的败血症死亡率。研究人员希望后期在促进这种大数据分析模型使用的时候,同时还可以帮助对患者进行实时地监测,研究者的目的就是获取患者的数据,并且开发出新型的学习健康系统,即开发出预测性的模型来应用于改善患者的健康之中。(生物谷Bioon.com)

doi:10.1111/acem.12876
PMC:
PMID:

Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data–Driven, Machine Learning Approach

R. Andrew Taylor MD, MHS*, Joseph R. Pare MD, Arjun K. Venkatesh MD, MBA, MHS, Hani Mowafi MD, MPH, Edward R. Melnick MD, MHS, William Fleischman MD andM. Kennedy Hall MD, MHS†

 

Objectives Predictive analytics in emergency care has mostly been limited to the use of clinical decision rules (CDRs) in the form of simple heuristics and scoring systems. In the development of CDRs, limitations in analytic methods and concerns with usability have generally constrained models to a preselected small set of variables judged to be clinically relevant and to rules that are easily calculated. Furthermore, CDRs frequently suffer from questions of generalizability, take years to develop, and lack the ability to be updated as new information becomes available. Newer analytic and machine learning techniques capable of harnessing the large number of variables that are already available through electronic health records (EHRs) may better predict patient outcomes and facilitate automation and deployment within clinical decision support systems. In this proof-of-concept study, a local, big data–driven, machine learning approach is compared to existing CDRs and traditional analytic methods using the prediction of sepsis in-hospital mortality as the use case. Methods This was a retrospective study of adult ED visits admitted to the hospital meeting criteria for sepsis from October 2013 to October 2014. Sepsis was defined as meeting criteria for systemic inflammatory response syndrome with an infectious admitting diagnosis in the ED. ED visits were randomly partitioned into an 80%/20% split for training and validation. A random forest model (machine learning approach) was constructed using over 500 clinical variables from data available within the EHRs of four hospitals to predict in-hospital mortality. The machine learning prediction model was then compared to a classification and regression tree (CART) model, logistic regression model, and previously developed prediction tools on the validation data set using area under the receiver operating characteristic curve (AUC) and chi-square statistics. Results There were 5,278 visits among 4,676 unique patients who met criteria for sepsis. Of the 4,222 patients in the training group, 210 (5.0%) died during hospitalization, and of the 1,056 patients in the validation group, 50 (4.7%) died during hospitalization. The AUCs with 95% confidence intervals (CIs) for the different models were as follows: random forest model, 0.86 (95% CI = 0.82 to 0.90); CART model, 0.69 (95% CI = 0.62 to 0.77); logistic regression model, 0.76 (95% CI = 0.69 to 0.82); CURB-65, 0.73 (95% CI = 0.67 to 0.80); MEDS, 0.71 (95% CI = 0.63 to 0.77); and mREMS, 0.72 (95% CI = 0.65 to 0.79). The random forest model AUC was statistically different from all other models (p ≤ 0.003 for all comparisons). Conclusions In this proof-of-concept study, a local big data–driven, machine learning approach outperformed existing CDRs as well as traditional analytic techniques for predicting in-hospital mortality of ED patients with sepsis. Future research should prospectively evaluate the effectiveness of this approach and whether it translates into improved clinical outcomes for high-risk sepsis patients. The methods developed serve as an example of a new model for predictive analytics in emergency care that can be automated, applied to other clinical outcomes of interest, and deployed in EHRs to enable locally relevant clinical predictions.


电信与信息服务业务经营许可证编号:京ICP证140722号 药品医疗器械网络信息服务备案(京)网药械信息备字(2023)第00464号网络备案:京ICP备12039121号-1
地址:北京市海淀区学清路9号汇智大厦B座7层 www.ylqxzb.com ©2017-2024 泰茂股份版权所有